Computing prime harmonic sums
نویسندگان
چکیده
We discuss a method for computing ∑ p≤x 1/p, using time about x2/3 and space about x1/3. It is based on the Meissel-Lehmer algorithm for computing the prime-counting function π(x), which was adapted and improved by Lagarias, Miller, and Odlyzko. We used this algorithm to determine the first point at which the prime harmonic sum first crosses 4.
منابع مشابه
Congruences Involving Alternating Multiple Harmonic Sums
We show that for any prime prime p = 2, p−1 k=1 (−1) k k − 1 2 k ≡ − (p−1)/2 k=1 1 k (mod p 3) by expressing the left-hand side as a combination of alternating multiple harmonic sums.
متن کاملMod p structure of alternating and non-alternating multiple harmonic sums
The well-known Wolstenholme’s Theorem says that for every prime p > 3 the (p−1)-st partial sum of the harmonic series is congruent to 0 modulo p2. If one replaces the harmonic series by ∑ k≥1 1/n for k even, then the modulus has to be changed from p2 to just p. One may consider generalizations of this to multiple harmonic sums (MHS) and alternating multiple harmonic sums (AMHS) which are partia...
متن کاملQuasi-symmetric functions and mod p multiple harmonic sums
We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e., infinite multiple harmonic series). In particular, we prove a “duality” result for mod p harmonic sums similar to (but distinct from) that for multiple zeta values. We also exploit the Hopf algebra structure of the quasi-symm...
متن کاملCongruences involving alternating multiple harmonic sum
We show that for any prime prime p = 2 p−1 k=1 (−1) k k − 1 2 k ≡ − (p−1)/2 k=1 1 k (mod p 3) by expressing the l.h.s. as a combination of alternating multiple harmonic sums.
متن کاملFiniteness of p-Divisible Sets of Multiple Harmonic Sums∗
Abstract. Let l be a positive integer and s = (s1, . . . , sl) be a sequence of positive integers. In this paper we shall study the arithmetic properties of multiple harmonic sum H(s;n) which is the n-th partial sum of multiple zeta value series ζ(s). We conjecture that for every s and every prime p there are only finitely many p-integral partial sums H(s;n). This generalizes a conjecture of Es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 78 شماره
صفحات -
تاریخ انتشار 2009